Magento to Snowflake

This page provides you with instructions on how to extract data from Magento and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Magento?

Magento is an open source content management system for ecommerce web sites. It's known for its flexibility and wide adoption across ecommerce businesses of all sizes.

What is Snowflake?

Snowflake is a cloud-based data warehouse implemented as a managed service. It runs on the Amazon Web Services architecture using EC2 and S3 instances. Snowflake is designed to be fast, flexible, and easy to work with. It provides native support for JSON, Avro, XML, and Parquet data, and can provide access to the same data for multiple workgroups or workloads simultaneously with no contention roadblocks or performance degradation.

Getting data out of Magento

You can use the Magento API to extract information. In most recent version, Magento offers both REST and SOAP versions of its API. Be warned, however, that historical versions of different Magento API calls could display inconsistent compatibility.

You can also pull data directly from the underlying database. (Using the API is really just doing this via a layer of abstraction.) If you go this route, familiarize yourself with the Magento database structure.

Preparing Magento data

Your Magento data needs to be structured into a schema for your destination database. If you choose to work with the default Magento database structure in your analytical environment, this simply means recreating the tables and fields that you pulled from your Magento API. You can refer to the API docs or use the information_schema tables in those databases to get the information you need.

Preparing data for Snowflake

Depending on your data structures, you may need to prepare your data before loading. Check the supported data types for Snowflake and make sure that your data maps neatly to them.

Note that you won't need to define a schema in advance when loading JSON or XML data into Snowflake.

Loading data into Snowflake

Snowflake's documentation includes a Data Loading Overview that guides you through the task of loading your data. A data loading wizard in the Snowflake web UI may be useful if you're not loading a lot of data, but for many organizations, the limitations on that tool will make it unsuitable. You can load your data with two manual steps:

  • Use the PUT command to stage files.
  • Use the COPY INTO table command to load prepared data into an awaiting table.

You can copy the data from your local drive or from Amazon S3. Snowflake lets you make a virtual warehouse that can power the insertion process.

Keeping Magento data up to date

At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.

Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Magento.

And remember, as with any code, once you write it, you have to maintain it. If Magento modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.

Other data warehouse options

Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, or PostgreSQL, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, and To Panoply.

Easier and faster alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Magento data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Snowflake data warehouse.